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SHAPE OPTIMIZATION FOR VARIATIONAL INEQUALITIES:
THE SCALAR TRESCA FRICTION PROBLEM

SAMIR ADLY*, LOIC BOURDIN', FABIEN CAUBET#, AND AYMERIC JACOB DE CORDEMOY?#

Abstract. This paper investigates, without any regularization or penalization procedure, a shape optimization
problem involving a simplified friction phenomena modeled by a scalar Tresca friction law. Precisely, using tools
from convex and variational analysis such as proximal operators and the notion of twice epi-differentiability, we prove
that the solution to a scalar Tresca friction problem admits a directional derivative with respect to the shape which
moreover coincides with the solution to a boundary value problem involving Signorini-type unilateral conditions.
Then we explicitly characterize the shape gradient of the corresponding energy functional and we exhibit a descent
direction. Finally numerical simulations are performed to solve the corresponding energy minimization problem
under a volume constraint which shows the applicability of our method and our theoretical results.

Key words. Shape optimization, shape sensitivity analysis, variational inequalities, scalar Tresca friction law,
Signorini’s unilateral conditions, proximal operator, twice epi-differentiability.
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1. Introduction.

Motivation. On the one hand, shape optimization is the mathematical field whose aim is to
find the optimal shape of a given object with respect to a given criterion (see, e.g., [6, 24, 37]). Tt
is increasingly taken into account in industry in order to identify the optimal shape of a product
who must satisfy some constraints. On the other hand, mechanical contact models are used to
study the contact of deformable solids that touch each other on parts of their boundaries (see,
e.g., [15, 26, 27]). Usually the contact prevents penetration between the two rigid bodies, and
possibly allows sliding modes which causes friction phenomena. A non-permeable contact can be
described by the so-called Signorini unilateral conditions (see, e.g., [35, 36]) that take the form
of inequality conditions on the contact surface, while a friction phenomenon can be described by
the so-called Tresca friction law (see, e.g., [26]) which appears as a boundary condition involving
nonsmooth inequalities depending on a friction threshold.

Shape optimization problems involving mechanical contact models have already been inves-
tigated in the literature (see, e.g., [8, 17, 19, 20, 22, 25] and references therein), and they are
increasingly taken into account in industrial issues and engineering applications. Due to the in-
volved inequalities and nonsmooth terms, the standard methods found in the literature usually
consist in regularization (see, e.g., [7, 14, 28|), penalization (see, e.g., [13]) or dualization (see [37,
Chapter 4] and [38]) procedures. In simple terms, regularization consists in using Moreau’s enve-
lope to approximate the optimization problem associated with the model, and penalization uses
Yosida’s approximation in the corresponding optimality condition to turn the variational inequality
into a variational equality. However, both of these methods do not take into account the exact
characterization of the solution and may perturb the original nature of the model. The dualization
method used in [38] consists in describing the primal/dual pair as a saddle point of the associated
Lagrangian. Then the dual problem leads to a characterization that involves only projection oper-
ators and thus Mignot’s theorem (see [29]) about conical differentiability can be applied. However
this method results in material /shape derivative characterizations that are implicit, as they involve
dual elements. In this paper our aim is to propose a new methodology which allows to preserve the
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2 S. ADLY, L. BOURDIN, F. CAUBET, AND A. JACOB DE CORDEMOY

original nature of the problem, that is, without using any regularization or penalization procedure,
and moreover to work only with the primal problem. Precisely our strategy is based on the theory
of variational inequalities and on tools from convex and variational analysis such as the notion
of proximal operator introduced by J.J. Moreau in 1965 (see [31]) and the notion of twice epi-
differentiability introduced by R.T. Rockafellar in 1985 (see [33]). To the best of our knowledge,
this is the first time that these concepts are applied in the context of shape optimization problems
involving nonsmoothness, which makes this contribution new and original in the literature.

As a first step towards more realistic and more complex mechanical contact models, note that
the present paper focuses only on a shape optimization problem involving a simplified friction
phenomena modeled by a scalar Tresca friction law. The extension of our methodology to the
vectorial elasticity model, or to other variational inequalities (such as Signorini-type models), will
be the subject of future research.

Description of the shape optimization problem and methodology. In this paragraph, we use
standard notations which are recalled in Section 2. Let d € N* be a positive integer which represents

the dimension, and let f € H!(R?) and g € H?(R?) be such that g > 0 almost everywhere (a.e.)
on R?. In this paper, we consider the shape optimization problem given by

(1.1) migiéaize J(),
12[=x

where

U:={Qc R? | © nonempty connected bounded open subset of R? with Lipschitz boundary},

with the volume constraint |2] = A > 0, where J : U/ — R is the Tresca energy functional defined

by
1
7@ =3 [ (19wl + luaP) + [ glual - [ fua.
Q r Q

where I' := 99 is the boundary of Q and where ug € H(Q) stands for the unique solution to the
scalar Tresca friction problem given by

{ —Au+u = f in Q,

(TP) |Onu| < g and udpu+glul =0 on T,

for all 2 € U. Recall that, in contact mechanics, f models volume forces and that the boundary
condition in (TPg,) is known as the scalar version of the Tresca friction law (see, e.g., [18, Section 1.3
Chapter 1]) where g is a given friction threshold. In this paper, we refer to it as the scalar Tresca
friction law. Note that we focus here on minimizing the energy functional (as in [17, 23, 39]) which
corresponds to maximize the compliance (see [6]). In simple terms, our research focuses on finding
the "laziest shape" that can resist external forces, while taking into account the effect of friction
on its surface.

Also recall that, for any Q € U, the unique solution to (TPg) is characterized by uqg =
prox, (Fo), where F € H'(2) is the unique solution to the classical Neumann problem

CAF+F=f inQ,
OFF =0 onT,

and where prox,, : H'(€2) — H'(Q) stands for the proximal operator associated with the Tresca
friction functional ¢ : HY(Q) — R defined by

¢QZ Hl(Q) — R
v o— Pq(v) ::/Fg\v|.
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SHAPE OPTIMIZATION FOR VARIATIONAL INEQUALITIES 3

We refer for instance to [3] for details on existence/uniqueness and characterization of the solution
to Problem (TPg,).

To deal with the numerical treatment of the above shape optimization problem, a suitable
expression of the shape gradient of J is required. To this aim we follow the classical strategy
developed in the shape optimization literature (see, e.g., [6, 24]). Consider Q¢ € U and a di-
rection V € CL°(R4, RY) := CY(R?I RY) N W (R RY). Then, for any ¢ > 0 sufficiently small
such that id + tV is a C!-diffeomorphism of R?, we denote by Q, := (id + tV)(Qp) € U and
by us == ug, € H'(€;), where id : R? — R? stands for the identity operator. To get an expression
of the shape gradient of 7 at )¢ in the direction V', the first step naturally consists in obtaining
an expression of the derivative of the map t € Ry +— u; € HY(Q;) at t = 0. However this map
is not well defined since the codomain H'({);) depends on the variable t. To overcome the issue
that u; is defined on the moving domain 2;, we consider the change of variables id + ¢tV and we
prove that %, := u; o (id + tV)) € H(£)g) is the unique solution to the perturbed scalar Tresca
friction problem given by

—div (AtVﬂt> + ﬂtJt = ftJt in Qo,
|AtVUt . 1’1‘ < gtJTt and ﬂtAtVﬂt -n+ gtJTt |ﬂt| =0 on Fo,

considered on the fixed domain €, where 'y := 9, f; := fo (id +tV) € HYRY), g; =
go (id + tV) € HY(R?) and where J;, A; and Jt, are standard Jacobian terms resulting from
the change of variables used in the weak variational formulation of Problem (TPgq,) (see details in
Subsection 3.1). Hence, the shape perturbation is shifted, via the change of variables, to the data
of the scalar Tresca friction problem.

Now, to obtain an expression of the derivative of the map t € Ry — w, € H(Qg) at t = 0,
which will be denoted by uy € H(Q) and called material directional derivative (the terminology
directional has been added with respect to the literature since, in the present nonsmooth framework,
the expression of ug will not be linear with respect to the direction V', see Remark 3.8 for details),
we write that @, = prox, (F}), where F; € H' () is the unique solution to the perturbed Neumann
problem

—div (AtVFt) + FtJt = ftJt in Qo,
AtVFt -n=20 on Fo,

and where ¢; : H'(Qg) — R is the perturbed Tresca friction functional given by
¢ HY Qo) — R
v o— P(v) = / g:JT, v,

To

considered on the perturbed Hilbert space (H!(Q), (-, ‘)a,.1,) (see details on the perturbed scalar
product in Subsection 2.3). To deal with the differentiability (in a generalized sense) of the pa-
rameterized proximal operator prox,, : H'(Qy) — H'(€) we invoke the notion of twice epi-
differentiability for convex functions introduced by R.T. Rockafellar in 1985 (see [33]) which leads
to the protodifferentiability of the corresponding proximal operators. Actually, since the work by
R.T. Rockafellar deals only with non-parameterized convex functions, we will use instead the recent
work [2] where the notion of twice epi-differentiability has been adapted to parameterized convex
functions.

Before listing the main theoretical results obtained in the present paper thanks to the above
strategy, let us mention that the sensitivity analysis of the scalar Tresca friction problem (TPg)
with respect to perturbations of f and g has already been performed in our previous paper [9].
However, since it was done in a general context (not in the specific context of shape optimization),
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4 S. ADLY, L. BOURDIN, F. CAUBET, AND A. JACOB DE CORDEMOY

the previous paper [9] considered only the case where J; = Jp, = 1 and Ay = I is the identity
matrix of R%*? and thus the scalar product (-, -) A,.3, was independent of the parameter ¢t. Hence
some nontrivial adjustments are required to deal with the t-dependent context of the present work.
We refer to Subsection 3.1 for details.

Finally, notice that, in this paper, we do not prove theoretically the existence of a solution
to the shape optimization problem (1.1). The interested reader can find some related existence
results (for very specific geometries in the two dimensional case) in [19].

Main theoretical results. Our main theoretical results, stated in Theorems 3.6 and 3.12, are
summarized below. However, to make their expressions more explicit and elegant, we present them
under certain additional regularity assumptions, such as ug € H?(Qq), within the framework of
Corollaries 3.9, 3.11 and 3.13, making them more suitable for this introduction.

(i) Under some appropriate assumptions described in Corollary 3.9, the material directional

derivative 1y € H() is the unique weak solution to the scalar Signorini problem given

by
—Auj+uy = —A(V -Vug) + V- Vi in Qo,
uy =0 on I'fY,
Ontty = W™ (V') on I,
) <0, Oty < h™ (V) and @) (On11hy — h™(V)) = 0 on I'g”?,
uy > 0, Ogugy > W™ (V) and ) (Oyuy, — h™(V)) = 0 on I'g}?,

where A" (V) := (¥£ -V = VVn - n)dyug + (VV + VV " )Vug - n € L*(T), where VV
stands for the standard Jacobian matrix of V', and where I'g is decomposed (up to a null
set) as I UT? UTg"? UT'S? (see details in Theorem 3.6). Recall that the boundary
conditions on I's®? and T'g}? are known as the scalar versions of the Signorini unilateral
conditions (see, e.g., [27, Section 1]).

(ii) We deduce in Corollary 3.11 that, under appropriate assumptions, the shape directional
derivative, defined by uf, := uy, — Vug - V€ H(Qg) (which roughly corresponds to the
derivative of the map t € Ry — u; € HY(;) at t = 0), is the unique weak solution to the
scalar Signorini problem given by

—Aug+uy =0 in Q,
uf = =V -Vug on 'Y,
Ohuy = h3(V) on '™,
uy < =V -Vug, dquy < h*(V) and (u + V-Vug) (Oguy — h*(V)) = 0 on I'g%?,
uy > —V-Vug, dquf > h*(V) and (uf + V-Vug) (Oquy — h*(V)) = 0 on I'g%?,

where h*(V) := V- 0(0(Ontin) — L4 + Viyug - Vi, (V ) — gV(2) . V € L(I).
Finally the two previous items are used to obtain Corollary 3.13 asserting that, under
appropriate assumptions, the shape gradient of 7 at )y in the direction V is given by

~—

(ii

/ _ [Vuo|l* + |uo|* Do
J (QO)(V) = V'n 5 — f’LLQ + Hg |’U,0| — Oh (UOanUO) + guoV 7 -n |,
To

where H stands for the mean curvature of I'y. We emphasize that, with the Tresca energy
functional J considered in the present work, we obtain that J'(£2o) depends only on wug
(and not on uy). As a consequence its expression is explicit (and also linear) with respect
to the direction V. In particular this implies that there is no need to introduce any adjoint
problem to perform numerical simulations (see Remark 3.15 for details).

This manuscript is for review purposes only.



139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154

158

159
160
161
162
163
164
165
166

SHAPE OPTIMIZATION FOR VARIATIONAL INEQUALITIES 5

Application to shape optimization and numerical simulations. The expression of the shape
gradient of J stated in (iii) allows us to exhibit an explicit descent direction of J (see Section 4
for details). Hence, using this descent direction together with a basic Uzawa algorithm to take
into account the volume constraint, we perform in Section 4 numerical simulations to solve the
shape optimization problem (1.1) on a two-dimensional example. Furthermore, we present several
numerical results with different values of g, allowing us to emphasize an interesting behavior of
the optimal shape. Precisely, in our example, it seems to transit from the optimal shape when one
replaces the Tresca problem and its energy functional by Dirichlet ones when g goes to infinity
pointwisely, to the optimal shape when one replaces the Tresca problem and its energy functional
by Neumann ones when g goes to zero pointwisely.

Organization of the paper. The paper is organized as follows. Section 2 is dedicated to some
basic recalls from convex, variational and functional analysis, differential geometry and boundary
value problems involved all along the paper. In Section 3, we state and prove our main theoretical
results. Finally, in Section 4, numerical simulations are performed to solve the shape optimization
problem (1.1) on a two-dimensional example.

2. Preliminaries.

2.1. Reminders on proximal operator and twice epi-differentiability. For notions
and results recalled in this subsection, we refer to standard references from convex and variational
analysis literature such as [11, 30, 32| and [34, Chapter 12|. In what follows, (¥, (:,-),,) stands
for a general real Hilbert space. The domain and the epigraph of an extended real value function
1 H — RU{zxoo} are respectively defined by

dom (¢) :={x € H | ¥(z) < 400} and epi(¢):={(z,t) e H xR |¢(z) <t}.

Recall that 7 is said to be proper if dom(z)) # 0 and 1(x) > —oo for all x € H, and that 9 is
convex (resp. lower semi-continuous) if and only if epi(¢)) is a convex (resp. closed) subset of H x R.
When 1 is proper, we denote by 0v : H = H its convex subdifferential operator, defined by

() :={y e H[Vz €M, (y,2 — )y <P(2) —Y(2)},

when z € dom(v)), and by 9y (z) := () whenever 2 ¢ dom(¢)). The notion of proximal operator has
been introduced by J.J. Moreau in 1965 (see [31]) as follows.

DEFINITION 2.1. The proximal operator associated with a proper, lower semi-continuous and
convex function 1 : H — RU {+oo} is the map prox,, : H — H defined by

. 1 . _
prox,, (x) = argmin |v(y) + 5 [ly = ally, | = (id +09) (),
yeEH

for all x € H, where id : H — H stands for the identity operator.

Recall that, if v : H — R U {+oc0} is a proper, lower semi-continuous and convex function,
then its subdifferential 9v is a maximal monotone operator (see, e.g., [32]), and thus its proximal
operator prox,, : H — H is well-defined, single-valued and nonexpansive, i.e. Lipschitz continuous
with modulus 1 (see, e.g., [11, Chapter IIJ).

As mentioned in Introduction, the unique solution to the scalar Tresca friction problem con-
sidered in this paper can be expressed via the proximal operator of the associated Tresca friction
functional ¢q. Therefore the shape sensitivity analysis of this problem is related to the differentia-
bility (in a generalized sense) of the involved proximal operator. To investigate this issue, we will
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6 S. ADLY, L. BOURDIN, F. CAUBET, AND A. JACOB DE CORDEMOY

use the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985 (see [33]) de-
fined as the Mosco epi-convergence of second-order difference quotient functions. Our aim in what
follows is to provide reminders and backgrounds on these notions for the reader’s convenience. For
more details, we refer to [34, Chapter 7, Section B p.240] for the finite-dimensional case and to [16]
for the infinite-dimensional case. The strong (resp. weak) convergence of a sequence in H will be
denoted by — (resp. —) and note that all limits with respect to ¢ will be considered for ¢ — 0.

DEFINITION 2.2 (Mosco convergence). The outer, weak-outer, inner and weak-inner limits of
a parameterized family (St)iso of subsets of H are respectively defined by

limsup S; := {$ €H | Itn)nen — 01, 3 (Tn)peny 2, YR EN, 2, € Stn} ,
wlimsup S; == {z € H | I(tn)nen = 07, I (2n) ey — @, VR EN, z,, € 5, },

liminf Sy = {2 €M |Y(tw)nen — 07, I(zn), ey 2> @, INEN, V> N, z, € Sy, },
w-liminf Sy = {z € H |V(tn)nen — 07, F(@n),eny =@, INEN, VR > N, 2, €5, }.

The family (St)i>o is said to be Mosco convergent if w-limsup S; C liminf S;. In that case all the
previous limits are equal and we write

M-lim S; := liminf S; = limsup S; = w-liminf S; = w-lim sup S;.

DEFINITION 2.3 (Mosco epi-convergence).  Let (¢¢)i~0 be a parameterized family of func-
tions ¥y : H — RU{Zo00} for allt > 0. We say that (¢)1>0 is Mosco epi-convergent if (epi(w¢))i>o
is Mosco convergent in H x R. Then we denote by ME-lim ¢, : H — R U {+oo} the function
characterized by its epigraph epi (ME-lim ;) := M-lim epi (¢);) and we say that (1t)i~0 Mosco
epi-converges to ME-lim ).

REMARK 2.4. In Definition 2.3, the abbreviation ME stands for the Mosco Epi-convergence
(which is related to functions), while the abbreviation M stands for the Mosco convergence (related
to subsets).

The notion of twice epi-differentiability was originally introduced for nonparameterized convex
functions. However, as mentioned in Introduction, the framework of the present paper requires an
extended version to parameterized convex functions which has recently been developed in [2]. To
provide recalls on this extended notion, when considering a function ¥ : Ry x H — RU {+o0}
such that, for all ¢ > 0, U(t,-) : H — R U {400} is a proper function, we will make use of the
following two notations: 0¥(0,-)(z) stands for the convex subdifferential operator at z € H of
the function ¥(0,-), and for each t > 0, U"1(t,R) := {zx € H | ¥(t,z) € R} and U~1(-,R) :=
ﬂtZO\IJ_l (t, R)

DEFINITION 2.5 (Twice epi-differentiability depending on a parameter). Let ¥ : Ry x H —
R U {400} be a function such that, for all t > 0, U(¢,-) : H — R U {400} is a proper lower
semi-continuous convex function. Then W is said to be twice epi-differentiable at x € W=1(-|R)
fory € 0Y(0,-)(z) if the family of second-order difference quotient functions (A2W(z|y))i>o defined
by

A2V (zly): H — RU{+o0}
z o AFU(zly)(2) = LGLRRD) \Itlz(t’x) t<y’Z>H,

for allt >0, is Mosco epi-convergent. In that case we denote by
DU (z]y) := ME-lim A7V (z|y),

which is called the second-order epi-derivative of ¥ at x for y.

This manuscript is for review purposes only.
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REMARK 2.6. If the real-valued function W is t-independent, Definition 2.5 recovers the clas-
sical notion of twice epi-differentiability originally introduced in [33] (up to the multiplicative
constant 1).

REMARK 2.7. It is well-known that the convexity and the lower-semicontinuity are preserved
by the Mosco epi-convergence. However, the properness of the Mosco epi-limit may fail even if
the sequence is proper. If, for each t > 0, U(t,:) : H — R U {400} is a proper, lower semi-
continuous and convex function, then the Mosco epi-limi D?W(x|y) (when it exists) is also lower
semi-continuous and convex function. However, it may be possible that there exists some z € H
such that D2 (z|y)(z) = —oco (see, e.g., [2, Example 4.4 p.1711]).

To illustrate the notion of twice epi-differentiability, two examples extracted from [2, Lemma 5.2
p.1717] are given below. The first example is about a t-independent function which will be useful
in this paper (see Lemma 3.5) and the second one concerns a t-dependent function.

EXAMPLE 2.8. The classical absolute value map |-| : R — R, which is a proper lower semi-
continuous convex function on R, is twice epi-differentiable at any = € R for any y € 9|-|(x), and
its second-order epi-derivative is given by DZ|-|(z|y) = ik, ,, where K, is the nonempty closed
convex subset of R defined by

R ifx#0,
K. R~ ifz=0and y=—1,
YY) RT ifr=0and y =1,
{0} ifx=0and y € (-1,1),

and where tk, , stands for the indicator function of K, ,, defined by ik, ,(2) := 0 if 2 € K, ,,
and g, ,(2) := 400 otherwise.

EXAMPLE 2.9. Consider the function ¥ : Ry x R — R defined by ¥(t,z) := |z — t?| for
all (t,z) € Ry xR. For each ¢t > 0, U(¢,-) is a proper, lower semi-continuous and convex function.
For all z € R and all y € 9¥(0,-)(x), U is twice epi-differentiable at x for y and its second-order
epi-derivative is given by

LR 1f3;7é0,
) s ifx=0and y=—1,
DIV (zly) = g+ — 2 ifr=0andy=1,

Loy —y—1 ifr=0andye (-1,1).

Finally the next proposition (which can be found in [2, Theorem 4.15 p.1714]) is the key point
to derive our main results in the present work.

PROPOSITION 2.10. Let ¥ : Ry x H — R U {400} be a function such that, for all t > 0,
U(t, ) : H— RU{+o0} is a proper, lower semi-continuous and conver function. Let F: Ry — H
and u : Ry — H be defined by

u(t) := proxy . (F(t)),
for all t > 0. If the conditions
(i) F is differentiable at t = 0;
(i) W is twice epi-differentiable at u(0) for F(0) —u(0) € 9¥(0,-)(w(0));
(iii) D2W(u(0)|F(0) — u(0)) is a proper function on H;
are satisfied, then u is differentiable at t = 0 with

u'(0) = Proxpzy (u(0)| F(0)—u(0)) (£ (0))-

This manuscript is for review purposes only.
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8 S. ADLY, L. BOURDIN, F. CAUBET, AND A. JACOB DE CORDEMOY

2.2. Reminders on differential geometry. Let d € N* be a positive integer, {2 be a
nonempty bounded connected open subset of R? with a Lipschitz boundary T' := 9 and n be
the outward-pointing unit normal vector to I'. In the whole paper we denote by C3°(€2) the
set of functions that are infinitely differentiable with compact support in €2, by C5°(Q2)" the set of
distributions on Q, for (m, p) € NxN*, by W™?(Q), L*(T"), HY/?(T"), H~'/2(I"), the usual Lebesgue
and Sobolev spaces endowed with their standard norms, and we denote by H™(Q2) := W™2(Q)
and by Haiy () := {w € (L2(Q))¢ | div(w) € L2(2)}. The next proposition, known as divergence
formula, can be found in [5, Theorem 4.4.7 p.104].

PROPOSITION 2.11 (Divergence formula). If w € Hg;(Q), then w admits a normal trace,
denoted by w -n € H-Y/2(T), satisfying

/ div(w)v —|—/ w - Vo = (WD, 0)y-1/20) wm/2(r) » vu € HY(Q).
Q Q

The following propositions will be useful and their proofs can be found in [24].

PROPOSITION 2.12. Let V € CL(RY, RYH)NWL(RY RY) and v € HY(Q) such that Av € L2(9).
Then the equality

A(V - Vo) = div ((Av) V — div(V)Vu + (VV + VVT)W) :

holds true in C§°(Q)".
PROPOSITION 2.13. Assume that T is of class C* and let V € C*(R?, R?). It holds that

/(V Vv + ’UleI‘(V)) = / V. n(@nv + H’U), Yo € \7\72,1(9)7
r r

where divp (V') :=div(V) — (VVn-n) € L>=(T') is the tangential divergence of V, Opv := Vv -n €
LY(T) is the normal derivative of v, and H stands for the mean curvature of T.

PROPOSITION 2.14. Assume that T is of class C* and let w € H?>(Q). It holds that

2

Aw:pr—i—Hanw—l—a—w a.e. on T,
On?

where Arw € L2(T") stands for the Laplace-Beltrami operator of w (see, e.g., [2/, Definition 5.4.11
p.196/), and P D?(w)n-n € L3(T), where D*(w) stands for the Hessian matriz of w. Moreover

on2 "

it holds that

/vpr = — / Vru - Vrw, Yv € HZ(Q),
r r

where Vv := Vv — (Oyv)n € HY2(I',R?) stands for the tangential gradient of v.

2.3. Reminders on three basic nonlinear boundary value problems. As mentioned
in Introduction, the major part of the present work consists in performing the sensitivity analysis
of a scalar Tresca friction problem with respect to shape perturbation. To this aim three classical
boundary value problems will be involved: a Neumann problem, a scalar Signorini problem and,
of course, a scalar Tresca friction problem. Our aim in this subsection is to recall basic notions
and results concerning these three boundary value problems for the reader’s convenience. Since
the proofs are very similar to the ones detailed in our paper [3], they will be omitted here.

Let d € N* be a positive integer and Q be a nonempty bounded connected open subset of R?
with a Lipschitz continuous boundary T' := 9. Consider also h € L2(Q2), k € L%(Q), ¢ € L*(I),
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w € HY/2(T) and M € L>®(Q, R4*4) satisfying
h > a a.e. on and M(z)y -y >|yll*>, vy eR?,

for some o > 0, v > 0, where M (x) is a symmetric matrix for almost every = € €, and where || - ||
stands for the usual Euclidean norm of R%. From those assumptions, note that the map

ORIV H'(Q) xHY(Q) — R
(v1,v2) = (U1, 02) = / MVuv; - Vg —|—/ v1v2h,
Q Q

is a scalar product on H!(Q).

2.3.1. A Neumann problem. Consider the Neumann problem given by

(NP) { —div(IMVF) 4+ Fh = k in Q,

MVF -n=/ onl,

where the data have been introduced at the beginning of Section 2.3.

DEFINITION 2.15 (Solution to the Neumann problem). A (strong) solution to the Neumann
problem (NP) is a function F € HY(Q) such that —div(MVF)+ Fh =k in C5°(Q2) and MVF -n €
L?(T) with MVF -n =/ a.e. onT.

DEFINITION 2.16 (Weak solution to the Neumann problem). A weak solution to the Neumann
problem (NP) is a function F € HY(Q) such that

/MVF~VU+/th:/kv+/£v, Yo € HY(Q).
Q Q Q r

PROPOSITION 2.17. A function F € HY(Q) is a (strong) solution to the Neumann prob-
lem (NP) if and only if F is a weak solution to the Neumann problem (NP).

From the assumptions on M and h and using the Riesz representation theorem, one can easily
get the following existence/uniqueness result.

PROPOSITION 2.18. The Neumann problem (NP) possesses a unique (strong) solution F €
HY(Q).

2.3.2. A scalar Signorini problem. In this part we assume that I" is decomposed (up to a
null set) as
I'vyUI'puUl'g_ UTl'gy,

where I'y, I'p, I's— and I's; are four measurable pairwise disjoint subsets of I'. Consider the scalar
Signorini problem given by

—Au+u =k inQ,
u = w on ['p,
(SP) Opu = on I'y,
u<w, Ohu <{land (u—w)(Oqu—4~) =0 onTg_,
u>w, Oqgu > € and (u —w) (Oqu—£€) = 0 on gy,

where the data have been introduced at the beginning of Section 2.3.

DEFINITION 2.19 (Solution to the scalar Signorini problem). A (strong) solution to the scalar
Signorini problem (SP) is a function u € H(Q) such that —Au +u = f in C§°(Q), u = w a.e.
on I'p, and also Oyu € L?(Ty) with Oyu =L a.e. onT'n, u < w, Syu < £ and (u — w)(Oqu —£) =0
a.e. onT's_, u>w, hu > and (u —w)(Ohu —¥¢) =0 a.e. onT'g;.
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DEFINITION 2.20 (Weak solution to the scalar Signorini problem). A weak solution to the
scalar Signorini problem (SP) is a function u € KL (Q) such that

Vu-V(v—u)+/

w(v—u) > k(v—u)+/€(v—u), Yo € KL (Q),
o Q r

Q

where KL (Q) is the nonempty closed convex subset of H'(Q) defined by
Ky(Q):={veH"(Q)|[v<wae onTs_,v=w ae onl'p andv>w a.e. onTs;}.

One can easily prove that a (strong) solution to the scalar Signorini problem (SP) is also a weak
solution. However, to the best of our knowledge, one cannot prove the converse without additional
assumptions. To get the equivalence, one can assume, in particular, that the decomposition I'y U
I'pUT's- UT'gy is consistent in the following sense.

DEFINITION 2.21 (Consistent decomposition). The decomposition Ty UTp UTs— UT g4 is
said to be consistent if

(i) For almost all s € T's_ (resp. I'sy), s € intp(I's—) (resp. s € intr(I's4)), where the

notation intr stands for the interior relative to T';
(ii) The nonempty closed conver subset ICllU/z(F) of HY/2(T') defined by

KY2(T) = {v eHY?() |v<w a.e. onTs_, v=w a.e. onTp and v > w a.e.on FS+},

is dense in the nonempty closed convex subset KO (T') of L2(T") defined by
Ko(I):={vel?*I)|v<wae onls_,v=wae onTp andv>w ae onTg}.

PROPOSITION 2.22. Let u € HY(Q).

(1) If w is a (strong) solution to the scalar Signorini problem (SP), then u is a weak solution
to the scalar Signorini problem (SP).

(i) If u is a weak solution to the scalar Signorini problem (SP) such that O,u € L*(T') and
the decomposition Ty UTp UT's— UT gy is consistent, then u is a (strong) solution to the
scalar Signorini problem (SP).

Using the classical characterization of the projection operator, one can easily get the following
existence/uniqueness result.

PROPOSITION 2.23. The scalar Signorini problem (SP) admits a unique weak solution u €
HY(Q) characterized by

u = projic1 (o) (F),

where F € HY(2) is the unique solution to the Neumann problem

AF+F =k inQ,
OhWF =0 onT,

and where projii ) HY(Q) — HY(Q) stands for the classical projection operator onto the
nonempty closed convex subset KL () of HX(Q) for the usual scalar product (-, VH1(0)-

2.3.3. A scalar Tresca friction problem. In this part we assume that £ > 0 a.e. on I'.
Consider the scalar Tresca friction problem given by

{ —div(IMVu) +uh = k in Q,

(TP) IMVu-n| </land uMVu-n+/jul =0 onT,

where the data have been introduced at the beginning of Section 2.3.
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DEFINITION 2.24 (Solution to the scalar Tresca friction problem). A (strong) solution to the
scalar Tresca friction problem (TP) is a function u € HY(Q) such that —div(MVu) + uh = k
in Cg°(Q)', MVu-n € L%(T) with [M(s)Vu(s)n(s)| < €(s) and u(s)M(s)Vu(s)-n(s)+€(s)|u(s)| =0
for almost all s € T'.

DEFINITION 2.25 (Weak solution to the scalar Tresca friction problem). A weak solution to
the scalar Tresca friction problem (TP) is a function u € H(Q2) such that

/QMW.V(U—u)+/Quh(v—u)+/rz\u|—/FE|u| E/Qk(v—u), o € H(9).

PROPOSITION 2.26. A function u € HY(Q) is a (strong) solution to the scalar Tresca friction
problem (TP) if and only if u is a weak solution to the scalar Tresca friction problem (TP).

Using the classical characterization of the proximal operator, we obtain the following exis-
tence/uniqueness result.

PROPOSITION 2.27. The scalar Tresca friction problem (TP) admits a unique (strong) solu-
tion u € HY(Q) characterized by
u = prox(F),

where F € HY(Q) is the unique solution to the Neumann problem

—divIMVF)+ Fh =k in Q,
MVF -n=0 onT,

and where prox, : H'(Q) — H'(Q) stands for the proximal operator associated with the Tresca
friction functional given by

¢: HY(Q) — R
v o) = [ e,

considered on the Hilbert space (H'(Q), (-, M)

3. Main theoretical results. Let d € N* be a positive integer and let f € H(R?) and g €
H?(R?) be such that g > 0 a.e. on R%. In this paper we consider the shape optimization problem
given by

minimize J(Q),
Qe
|2[=A

where

U :={Q c R?| Q nonempty connected bounded open subset of R? with Lipschitz boundary},

with the volume constraint |2 = A > 0, where J : U — R is the Tresca energy functional defined

by
1
J() ::5/ (HVUQH2+|UQ|2)+/g|UQ|_/f’U,Q,
Q r Q

where T' := 99 is the boundary of Q and where ug € H'(2) stands for the unique solution to the
scalar Tresca friction problem given by

{ —Au+u = f in Q,

(TPgq) |Onu| < g and uOpu+glul =0 on T,
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for all Q2 € Y. From Subsection 2.3.3, note that J can also be expressed as

7@ =3 [ (IVual® +luaf).
2 Jo
for all Q e U.
In the whole section let us fix Qg € 2. We denote by id : R? — R the identity operator. Our
aim here is to prove that, under appropriate assumptions, the functional 7 is shape differentiable
at Qp, in the sense that the map

cl(R4L,RY) — R
V. o— J((id+V)(Q)),

where CH°(R4,R?) := C'(R? R%) N W (R4, R?), is Gateaux differentiable at 0, and to give
an expression of the Gateaux differential, denoted by J’(€q), which is called the shape gradient
of J at Qg. To this aim we have to perform the sensitivity analysis of the scalar Tresca friction
problem (TPg,) with respect to the shape, and then characterize the material and shape directional
derivatives.

For better organization, this part will be done in the following three separate subsections
below. In Subsection 3.1, we perturb the scalar Tresca friction problem (TPgq,) with respect to the
shape. In Subsection 3.2, under appropriate assumptions, we characterize the material directional
derivative as solution to a variational inequality (see Theorem 3.6). Additionally, assuming a
regularity assumption on the solution to the scalar Tresca friction problem, we characterize the
material and shape directional derivatives as being weak solutions to scalar Signorini problems
(see Corollaries 3.9 and 3.11). Finally we prove in Subsection 3.3 our main result asserting that,
under appropriate assumptions, the functional J is shape differentiable at €2y and we provide an
expression of the shape gradient J'(£2o) (see Theorem 3.12 and Corollary 3.13).

3.1. Setting of the shape perturbation and preliminaries. Consider V € C>°(R? R?)
and, for all ¢ > 0 sufficiently small such that id + ¢tV is a C!-diffeomorphism of R?, consider the
shape perturbed scalar Tresca friction problem given by

*A’ut + u = f in Qt,
|Onue] < g and uOpus + glug] = 0 on Ty,

(TP,) {

where Q; := (id + tV)() € U and Ty := 0Q; = (id + tV)(Tp). From Subsection 2.3.3, there
exists a unique solution u; € H!(;) to (TP;) which satisfies

Vut-V(v—ut)—F/

Q

ut<v—ut>+/ gw—/ ng/ flo—w),  YoeHY(Q).
t Iy Iy Qy

Q4

Following the usual strategy in shape optimization literature (see, e.g., [24]) and using the change
of variables id + tV, we prove that u; := u; o (id +tV') € HY(Qp) satisfies

/ AV - V(v — ) +/ Uy (v — ) Jy +/ geJr,[v] _/ g, [
Qo Qo To To

> ftJt(U — ﬂt), Yov € Hl(Qo),
Qo
where f; := fo (id +tV) € HY(R?), g; := go (id +tV) € H2(R?), J; := det(I1 + tVV) € L*(R%)
is the Jacobian determinant, A, := det(I + tVV)(I + tVV) 11+ tVV ")~! € Lo(R? RI¥*%)
and Jp, := det(I+tVV)||(I4+tVV ")~ In| € C°(I) is the tangential Jacobian, where I stands for
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the identity matrix of R?¢. Therefore, we deduce from Subsection 2.3.3 that u; € H!({)) is the
unique solution to the perturbed scalar Tresca friction problem

{ —div (AtVEt) +ﬂtJt = ftJt in Qo,

(TPt) |AtVHt . n| S gtJTt and EtAtVﬂt -n+ gtJTt |Ht| =0 on FO,

and can be expressed as
Uy = prox,, (Fy),

where F; € H'(£2p) is the unique solution to the perturbed Neumann problem

—div (AtVFt) + FtJt = ftJt in Q(),
AtVFt -n=20 on Fo,

and prox,, : H'(Q) — H'(Q) is the proximal operator associated with the perturbed Tresca
friction functional
¢r: HY Qo) — R
v g(v) = / geJr,|vl,
To

considered on the perturbed Hilbert space (H'(Qo), (-, Va,)

Since the derivative of the map t € Ry — F;, € H}(Q) at ¢t = 0 is well known in the literature
(it can be proved in a similar way as in Lemma 3.2 below), one might believe that Proposition 2.10
could allow to compute the derivative of the map ¢t € Ry — u, € H'(Qg) at t = 0 (that is,
the material directional derivative) under the assumption of the twice epi-differentiability of the
parameterized functional ¢;. This would be very similar to the strategy developed in our previous
paper [9] in which we have considered a simpler case where J; = Jp, = 1 and Ay = I and where,
therefore, the scalar product (-, ) A,.], Was independent of . However, in the present work, we face
a scalar product (,-) A, that is t-dependent and we need to overcome this difficulty as follows.
Let us write Ay =1+ (A; — 1) and J; =1+ (J; — 1) to get

@0 =Wy + [ oIl = [ g fmlz [ fio-m)
I'y 1) Qo

*/ (Ath)VﬂtV(vfﬂt)f/ (thl)ﬂt (’U*ﬂt), v’UGHl(QQ),
Qo Qo

and thus

Uy = pI'OX@(tV,) (Et)y

where E; € H'(Qg) stands for the unique solution to the perturbed variational Neumann problem
given by

<Et, U>H1(Slo) = / ftJt’U — / (At — I) VEt . V’U — / (Jt — 1)@{07 V’U (S Hl(QO),
Qo Qo Qo

and where proxg;,.) : H!(99) — H(Qp) is the proximal operator associated with the parameterized
Tresca friction functional defined by

d: Ry xHY(QQ) — R

(t,v) — ®O(t,v) :z/ g:JT, v,
To

considered on the standard Hilbert space (H(Q), (-, i1 () Whose scalar product is the usual ¢-
independent one.
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REMARK 3.1. Note that the existence/uniqueness of the solution E; € H'(Qq) to the above
perturbed variational Neumann problem can be easily derived from the Riesz representation theo-
rem. Furthermore note that, if div ((A; —I) Vai;) € L?(€), then the above perturbed variational
Neumann problem corresponds exactly to the weak variational formulation of the perturbed Neu-
mann problem given by

—AEt + Et = ftJt - (Jt - l)ﬂt + le((At - I) Vﬂt) in Qo,
8nEt = — (At — I) Vﬂt -n on Fo.

For instance, note that the condition div ((A; —I) Va,) € L2(£) is satisfied when %, € H2(Qy).

Now our next step is to derive the differentiability of the map t € R + E; € H}(Qq) at t = 0.
To this aim let us recall that (see [24]):
(i) The map t € Ry ~ J; € L=°(R?) is differentiable at t = 0 with derivative given by div(V);
(ii) The map t € Ry — fiJ; € L2(R?) is differentiable at t = 0 with derivative given
by fdiv(V)+Vf-V;
(iii) The map t € Ry — A; € L>® (R4 R¥*) is differentiable at ¢t = 0 with derivative given
by Af := —VV — VYV +div(V);
(iv) The map t € Ry — g7, € L?(T) is differentiable at ¢+ = 0 with derivative given
by Vg -V + gdivp, (V).
LEMMA 3.2. The map t € Ry — E; € HY(Qy) is differentiable at t = 0 and its derivative,
denoted by E} € H(y), is the unique solution to the variational Neumann problem given by

(3.1) (B )y = / (fdiv(V) + Vf - V)o

- / (—VV —vv’ 4+ div(V)I) Vug - Vo — / div(V)ugv, Vo € HY ().
Qo Qo

Proof. Using the Riesz representation theorem, we denote by Z € H!(£y) the unique solution
to the above variational Neumann problem. From linearity we get that

‘Et_EO ftJt—f_

t

~Z (fdiv(V)+Vf-V)

t

S ’

H'(Q0)
A -1

L2(R%)

+

- (fvv —vvT 4 div(V)I)

e[ 12 (020
Loo (R, Rdxd)

T a3 7
=y =TV e ] ey e~ ol

Jr—1

—div(V) (%l 112 (9) + 1AIVIV) [ 100 (Ray 18 — o]l () »

"
Leo(R4)

for all ¢ > 0. Therefore, to conclude the proof, we only need to prove the continuity of the
mapt € Ry — wu, € Hl(Qo) at t = 0. To this aim let us take v = wug in the weak variational
formulation of @w; and v = w; in the weak variational formulation of ugy to get

— 1 — ol ) +/ (Ae =) Vg - V(uo — )
Qo

+/QO (3 - 1) <uO—ut>+/FO (ge37, — 9) (Juol — m]) z/ (ol — £) (w0 — 70

Qo

which leads to
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||ﬂt - UOHHl(QO) S (HAt - I”Loc(Rd,RdXd) + ||Jt - 1||L00(Rd)> ||ﬂt”H1(Q0)
+ Cllgedr, = glla gy + 1fede = Fllzmay s

for all ¢ > 0, where C > 0 is a constant that depends only on 4. Therefore, to conclude the proof,
we only need to prove that the map t € Ry = [[@[y1 () € R is bounded for ¢ > 0 sufficiently
small. For this purpose, let us take v = 0 in the weak variational formulation of @; to get that

/ AV, -V +/ |ﬂt|2Jt < fedity */ gedr, U],
Qo Qo Qo To

for all £ > 0, and thus
Tl gy < 2 (1 i ey + 2 9 s )
for all ¢ > 0 sufficiently small, which concludes the proof. ]

REMARK 3.3. Note that, if div((—=VV —VV' " +div(V)I)Vug) € L2(Qy), then the variational
Neumann problem in Lemma 3.2 corresponds exactly to the weak variational formulation of the
Neumann problem given by

—AE)+ El) = fdiv(V) + Vf - V — div(V)ug + div ((fvv —vvT 4 div(V)I) Vuo) in Q.
OnEl) = (vv +vvT - div(V)I) Vuo - n on T.

For instance, note that the condition div((—VV — VV' T + div(V)T)Vug) € L2(Qy) is satisfied
when ug € H2(Qp).

3.2. Material and shape directional derivatives. Consider the framework of Subsec-
tion 3.1. In particular recall that g € H?(R?) with g > 0 a.e. on RZ. Our aim in this subsec-
tion is to characterize the material directional derivative, that is, the derivative of the map ¢ €
R, — u; € HY(Qp) at t = 0, and then to deduce an expression of the shape directional de-
rivative defined by w( := @y — Vug - V (which roughly corresponds to the derivative of the
map t € Ry — u;, € HY() at t = 0).

In the previous Subsection 3.1, since we have expressed U; = proxg, .(£;) and characterized
in Lemma 3.2 the derivative of the map t € Ry — E, € HY(Q) at t = 0, our idea is to use
Proposition 2.10 in order to derive the material directional derivative. To this aim the twice epi-
differentiability of the parameterized Tresca friction functional ® has to be investigated as we did
in our previous paper [9] from which the next two lemmas are extracted.

LEMMA 3.4 (Second-order difference quotient function of ®).  Consider the framework of
Subsection 3.1. For all t > 0, u € HY(Q) and v € 99(0,-)(u), it holds that

(3-2) A7 (ulv)(w) = [ AFG(s)(u(s)|Bnv(s))(w(s)) ds,

T'o

for all w € HY(Q), where, for almost all s € Ty, AZG(s)(u(s)|0nv(s)) stands for the second-order
difference quotient function of G(s) at u(s) € R for dyv(s) € g(s)0]-|(u(s)), with G(s) defined by

G(s): RyxR — R
(t,z) — G(s)(t,2) = gi(s)dr,(s)]x]-

LEMMA 3.5 (Second-order epi-derivative of G(s)). Consider the framework of Subsection 3.1
and assume that, for almost all s € Ty, g has a directional derivative at s in any direction. Then, for
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almost all s € Ty, the map G(s) is twice epi-differentiable at any x € R and for all y € g(s)0||(x)
with

. Y
, (2) + (Vg(s) - V(s) + g(s)dive, (V) (s)) —
9(s) 9(s)
for all z € R, where 1x__, stands for the indicator function of the nonempty closed convex

g(s)
subset Kmﬁ of R (see Example 2.8).

We are now in a position to derive our first main result.

DZG(s)(x|y)(2) = ik,

2,

THEOREM 3.6 (Material directional derivative). Consider the framework of Subsection 5.1
and assume that:

(i) For almost all s € Ty, g has a directional derivative at s in any direction.

(ii) ® is twice epi-differentiable at uy for Ey — ug € 0P(0, -)(ug) with

(3-3) DZ®(uo| Eo — uo)(w) = / DZG (s)(uo(s)|0a(Eo — uo)(s))(w(s)) ds,

To

for all w € H(Q).
Then the map t € Ry — u, € HY(Qy) is differentiable at t = 0, and its derivative (that is, the
material directional derivative), denoted by uy € H'(Qq), is the unique solution to the variational
inequality

(34) @0~ Thhoy = [ V- Tuolo )
Qo

- [ (-9 =9V (V) Vo — AV - V(o 1)

\Y%
+ / <V -0 (f —ug) + (gg -V + dino(V)> 8nu0> (v —1y), Vv € ICUO On(Eg—uq) 5
I'o ’ 9

where lCuO on(Eq—ug) 18 the nonempty closed convex subset of H () defined by
’ g

— 1 uo,9 uo,9 _ uo,9
ICUO,aMnguO) = {veH" () |v<0ae onTg"? v>0ae on gy’ v=0ae only I

where Tg is decomposed, up to a null set, as T\ UTE UL UTg%?, where

S+
# 0},
=0 and anUO(S) € (*9(5)79(5))}v
=0 and dyuo(s) = g(s)},
=0 and Oyup(s) = —g(s)}.

Y ={sely|uo(s
'Y :={sely|uo(s
Fqsm!g = {S € PQ | UO(S
gy? = {s €T |uo(s

— — —

Proof. The proof is almost identical to [9, Theorem 3.21 p.19]. From Hypothesis (ii) and
Lemma, 3.5, it follows that

D3<I>(u0|E0 —ug)(w) = e,

On (Eg—uq) (’LU)
0 g

8H(E0 - UQ)(S)
9(s)
for all w € H*(Qp), where K., osto-uy is the nonempty closed convex subset of H!(Q) defined
’ 9
by

+/ (Vg(s) - V(s) + g(s)dive,(V))(s)) w(s)ds,
o

K., omo—uy = {w € H' () | w(s) € K

on(Eg—ug)(s) for almost all s € FO} ,
g

uo(8), =015y

This manuscript is for review purposes only.



466
467

468

469

484
485
186
487

488

489

SHAPE OPTIMIZATION FOR VARIATIONAL INEQUALITIES 17

which coincides with the definition given in Theorem 3.6. Moreover D?®(ug|Eg — ug) is a proper
lower semi-continuous convex function on H!(£)y), and from Lemma 3.2, the map t € R* — E; €
H'(Qp) is differentiable at ¢t = 0, with its derivative Ejj € H*(Q) being the unique solution to the
variational Neumann problem (3.1). Thus, using Theorem 2.10, the map t € RT — w; € H ()
is differentiable at ¢ = 0, and its derivative 1y € H!(Qq) satisfies

Ty = PrOXp2a(ug| Eo—uo) (F0)-
From the definition of the proximal operator (see Proposition 2.1), this leads to
(Ey = o, v = Wp) g1 ) < D2®(uo| Eo — o) (v) — D2®(uo| Eo — uo) (),
for all v € H' (). Hence one gets
(35) (@0 — Wy > [ (V)0 —a) — [ div(Vyuo (v — )
520 QO
- / (—VV vV’ + diV(V)I) Vug - V(v — 1)
Q0

8n’U/O
g

+ / (Vg V + gdive, (V) 220 (5 @),
T'o

for all v € K o, 2nFo=u0) - Using the divergence formula (see Proposition 2.11) and the equal-

ity —Aug +ug = f in L2(£)), we obtain that wj is solution to (3.4) and the uniqueness follows
from the classical Stampacchia theorem [12]. 0

REMARK 3.7. Note that Equality (3.3) in the second assumption of Theorem 3.6 exactly cor-
responds to the inversion of the symbols ME-lim and fFo in Equality (3.2). In a general context,
this is an open question. Nevertheless sufficient conditions can be derived and we refer to [3,
Appendix B] and [9, Appendix A] for examples.

REMARK 3.8. Consider the framework of Theorem 3.6 which is dependent of V' € C1*° (R4, R?)
and let us denote by (V') :=uj. One can easily see that

Up(a1 Vi + aaVa) = aquy (Vi) + a2t (Va).

for any Vi, Vo € CH*°(R?4 RY) and for any nonnegative real numbers a; > 0, az > 0. However,
this is not true for negative real numbers and justify why, in the present work, we call u; as
material directional derivative (instead of simply material derivative as usually in the literature).
This nonlinearity is standard in shape optimization for variational inequalities (see, e.g., [25] or [37,
Section 4]).

The presentation of Theorem 3.6 can be improved under additional regularity assumptions.

COROLLARY 3.9. Consider the framework of Theorem 3.6 with the additional assumptions
that ug € H3(Qp) and V' € C>* (R4 RY) := C2HRL,RY) N W2 (RERY). Then up € H(Qo)
is the unique weak solution to the scalar Signorini problem given by

—Auj+uy = —A(V -Vug) +V - Vug in Qo,

Uy = 0 on T,
(3.6) Oty = hm(V) on T,
) <0, Ontihy < h™(V) and T (OnTlhy — h™(V)) = ng’g,
Ty > 0, Oy > W™ (V') and 1, (OuTy — ™ (V) = on ngg’
where h™(V') == (% -V —VVn - n)du + (VV +VV ) Vuyg -n € L2(Iy).
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Proof. Since uy € H2(Qp) and V € C>*(R% RY), we deduce that div((—VV — VV +
div(V)I)Vug) € L?(€p). Using the divergence formula (see Proposition 2.11) in Inequality (3.4),
we get that

<ﬂ6a’0*ﬂ6>Hl(Qo) > /Q V - Vug (U*ﬁé)#»/g AUOVV(Ufﬂé)
+ / div ((=9V = VT +div(V)I) Vg ) (v — )
Qo
T Vg _,
+ Von(f—u)+ (VV+VV )VUO‘H+ 7-V—VVn~n Onug | (v —1yp),
To

forallv € K ou(sg-ug) . Moreover, since Au = u—f € H'(Qp), it holds that div(AugV') € L?(Q).

Thus, using again the divergence formula, one deduces
(3.7) (W, v — Wp)ypr () > / —div ((Auo) V — div(V)Vug + (VV + va)vuo) (v — 1))
Qo

+ V-Vuo(v—ﬂg)Jr/ (V) (v — 1),
QO 1—‘0

for all v € K = ou(eq—ue) - Furthermore, one has A(V - Vug) € L3(Qp) from ug € H3(Qp). Thus,
using Proposition 2.51127 it follows that

<ﬂ6,v*ﬂé>m(go)2/9 —A(V - Vug) (v =) + V'VUO(U*%H/ h™ (V) (v =) ,

QO 1—‘O

for all v € ICuO on(Bg—ugy) Which concludes the proof from Subsection 2.3.2. ]
’ g

REMARK 3.10. If Ty is sufficiently regular, then ug € H?()), and this is the best regularity
result that can be obtained. We refer to [10, Chapter 1, Theorem 1.10 p.43] and [10, Chapter 1,
Remark 1.26 p.47| for details. It does not mean that ug ¢ H3(Q) in general. It just means that,
in this reference, there is a counterexample in which uy ¢ H?’(QO) even if I'y is very smooth. Note
that, from the proof of Corollary 3.9, one can get, under the weaker assumption ug € H2(€)), that
the material directional derivative @ is the solution to the variational inequality (3.7) which is,
from Subsection 2.3.2, the weak formulation of a Signorini problem with the source term given
by —div((Aug) V — div(V)Vug + (VV + VV ) Vug) € L2(Qo).

Thanks to Corollary 3.9, we are now in a position to characterize the shape directional deriv-
ative.

COROLLARY 3.11 (Shape directional derivative). Consider the framework of Corollary 3.9
with the additional assumption that Ty is of class C3. Then the shape directional derivative, defined
by ufy := Uy — Vug -V € HY(Qp), is the unique weak solution to the scalar Signorini problem given

by

—Aug+uy =0 in Qo,
uy = =V -Vuy on T,
Oauy = h3(V) on 'Y,
uy < =V - Vug, Ohuy < h%(V) and (uy +V - Vug) (Onpuy — h5(V)) = 0 on g™,
uy > =V - Vug, Oqul > h5(V) and (uy +V - Vug) (Opuy — h5(V)) = 0 on I'g%?,
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Proof. From the weak variational formulation of % given in Corollary 3.9 and using the di-
vergence formula (see Proposition 2.11), one can easily obtain that

(ug,v =V - Vg — ug)g ) > / (R™(V) =V (V -Vug) -n) (v —V - Vug — up),
o

for all v € ICuO an(Eg—ug) (S€e notation introduced in Theorem 3.6), which can be rewritten as
’ g

(i, 0 — W ey > / (K™ (V) V(V - Vo) - 1) (w — )

forallw € K oumy-—ug) — V- Vug. Since T'g is of class C3 and uy € H3(£p), the normal derivative
’ g

of ug can be extended into a function defined in Qo such that dyug € H2(). Thus, it holds
that vO,ug € W21(€y) for all v € C>(), and one can use Propositions 2.12 and 2.13 to obtain
that

/F (R™(V) =V (V - Vug) -n)v

= Vn(=Vug - Vv —ugv + fo + Hvdyug + On (v0nuo)) — / gvV<anguO> v
To "

for all v € C°°(). Then, by using Proposition 2.14, one deduces that

/F (h™(V) =V (V -Vug) -n)v

2
= / V -n an (8nu0> - 8 Yo + VFOU/O . VFO(V . n) - gv M . V U,
Ty On? g

for all v € C*°(£), and also for all v € H!(Qq) by density. Thus it follows that

(ug, w — u6>H1(QO)

2
> / <V ‘n (311 (Onug) — 68;;0) + Vryuo - Vi, (V - n) 9V<8nguo) 'V> (w — ug)
To

for all w € ICuO on(my—uy) — V + Vug, which concludes the proof from Subsection 2.3.2. ]
’ 9

3.3. Shape gradient of the Tresca energy functional. Thanks to the characterization
of the material directional derivative obtained in Theorem 3.6, we are now in a position to prove
the main result of the present paper.

THEOREM 3.12. Consider the framework of Theorem 3.6. Then the Tresca energy functional J
admits a shape gradient at Qqy in any direction V€ CH°°(R? R?) given by

(3.8) T(Q)(V) = /Q div(V) [ Vuo|® + /Q Vo - (VV Vi — AugV)

2
Juo|® Vg .
+ V-n T—fuo — 7'V—|—d1vr0(V) ugOng | -
To
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Proof. By following the usual strategy developed in the shape optimization literature (see,
e.g., [6, 24]) to compute the shape gradient of J at g in a direction V' € C1>°(R% R%), one gets
1
7'@)V) = =5 [ (IVual +uol’) div(V) + | Vuo - YVt = (@ ) -
Qo Qo

On the other hand, since Uo + ug € IC E)n(EO up) (see notation introduced in Theorem 3.6), we

deduce from the weak variational formulatlon of wg that

Qo

_ /Q ((—VV _vvT s diV(V)I) Vg — AuOV) - Vg

+ /FO (V ‘n (f’u,o — |U0|2) + (Vgg -V 4+ diVFO(V)> UQ6HUO> .

The proof is complete thanks to the divergence formula (see Proposition 2.11). ]

As we did in Corollary 3.9 for the material directional derivative, the presentation of Theo-
rem 3.12 can be improved under additional assumptions.

COROLLARY 3.13. Consider the framework of Theorem 3.12 with the additional assumptions
that d € {1,2,3,4,5}, T is of class C> and ug € H3(Q). Then the shape gradient of the Tresca
energy functional J at Qg in any direction V € CH>°(R4, R?) is given by

2 2
O
V-.n <||Vu0||+u0 — fug + Hg|ug| — On (ugOnug) —I—guOV( gu()) .n) ,

7@V = [

Ty 2

where H is the mean curvature of T'y.
Proof. Let V € CH(R4 R%). Since ug € H2(Qy) C H3(Qp), it holds that

/ div(V) [Vuol = — / V-9 (I7u)?) / Von|Vaol?,
Qo Qo

AugV - Vug = — Vug - V(V . V’U,O) + OhgV - Vuy.
Qo Qo To

One deduces from (3.8) that

2 2
(3.9) T (Q0)(V) :/F V.n <”V“°|2+|“°| —fu0>

- / (8H’IL0V -Vug + (Vgg -V 4+ diVFO(V)> ann’IJ,Q) .
o

and

Moreover, since 'y is of class C* and uy € H3(£), the normal derivative of ug can be extended
into a function defined in Qg such that d,uy € H?(Qg). Therefore, using Proposition 2.13 with v =
uOhtig € W21(Qg), one gets

, [ Vuol|” + [uo|? Onto
T (Q)(V) = V-n — s = fuo — HupOyuo — Oy (uoOnuo) |+ [ guoV p V.
To To
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From the scalar Tresca friction law, one has HugOyuo = —Hg|ug| a.e. on I'g. Now let us focus on
the last term. Since ug =0 on I'Y"Y UT"7 U I‘gfr’g, we have

/ gro(anu()) -V :/ gu0v<a“u°) -V.
o 9 Lo 9

Let us introduce two disjoint subsets of I'y given by

Iy ={seTo|uo(s) >0} and I\ :={seTly|up(s) <0}.
Hence it follows that I'\"? = Ty} UTYY, with d,up = —g a.e. on T'\}?, and dyup = g aee.
on I'\"?. Moreover, since ug € H?(Q2) and d € {1,2,3,4,5}, we get from Sobolev embeddings (see,

e.g., [1, Chapter 4, p.79]) that ug is continuous over I'g, thus '\’ and I'\”? are open subsets

of T'y. Hence Vpo(%) =0 a.c. on I'}? UT"Y, and one deduces that

/ guOV(anu0> -V = V-n<guov<a“u0) -n) ,
INCRE g rye’ g

which concludes the proof. 0

REMARK 3.14. Under the weaker condition ug € H?(Qq) (satisfied if 'y is sufficiently regular,
see Remark 3.10), one can follow the proof of Corollary 3.13 and obtain that the shape gradient
of J is given by Equality (3.9).

REMARK 3.15. Consider the framework of Theorem 3.12. We have seen in Remark 3.8 that
the expression of the material directional derivative @ is not linear with respect to V.. However
one can observe that the scalar product (uj, u0>H1(QO)7 that appears in the proof of Theorem 3.12,
is. This leads to an expression of the shape gradient J'(Q)(V') in Theorem 3.12 that is linear
with respect to V. Hence we deduce that the Tresca energy functional J is shape differentiable
at Q. Furthermore note that the shape gradient J'(€)(V') depends only on ug (and not on w)
and therefore does not require the introduction of an appropriate adjoint problem to be computed
explicitly. The linear explicit expression of J'(€9)(V') with respect to the direction V' will allow
us in the next Section 4 to exhibit a descent direction for numerical simulations in order to solve
the shape optimization problem (1.1) on a two-dimensional example. It is worth noting that all
previous comments are specific to the Tresca energy functional 7. Other cost functionals, such
as the least-square functional, can pose challenges to correctly define an adjoint problem due to
nonlinearities in shape gradients. Note that these difficulties do not appear in the literature when
using regularization procedures (see, e.g., [25]). Our approach, which is solely based on convex and
variational analysis, does not address this challenge yet, and we believe it is an interesting area for
future research.

REMARK 3.16. Let us recall that the standard Neumann energy functional is

1
In(Q) = 5/9 (||VwN,Q||2 + |wN,Q|2) +/Fng,Q —/waN,Q,

for all 2 € U, where wx o € H' () is the unique solution to the standard Neumann problem

—A’LUN,Q +wN,o = f in Q,
(SNPQ) { 8n1.UN7Q = —g on I.

One can prove (see, e.g., [6, 24]) that the shape gradient of the Neumann energy functional Jy
at Qo € U in any direction V' € C»*°(R% R?) is given by

| 2

Q) (V) = /

o

2
Von (an,ﬂon + lox.ay
2

— fwn,0, + Hgwn,0, + On (ng,ﬂo)> -
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Thus the shape gradient of the Tresca energy functional 7 obtained in Corollary 3.13 is close to
the one of Jy with the additional term

Note that, if dyug = —g a.e. on I'y, then they coincide.
REMARK 3.17. Let us recall that the standard Dirichlet energy functional is

1
o) =5 [ (IFwnal® + lunal) - [ funa.
Q Q
for all 2 € U, where wp o € H!(€) is the unique solution to the Dirichlet problem

(DPQ) { _AUJD7Q + vaﬂ = f m Qa

wWp,Q = 0 onl.

Omne can prove (see, e.g., [6, 24]) that the shape gradient of Jp at Qg € U in any direction V' €
Ch>° (R4, RY) is given by

To@0)(V) = [ .

2 2
v on [ VeDsol” + lwpa|” |
To
Note that, if ug = 0 a.e. on I'g, then Vp,ug = 0 a.e. on [y, thus (9,up)? = [|Vug||? a.e. on 'y and
thus the shape gradient of 7 obtained in Corollary 3.13 coincides with the one of Jp.

4. Numerical simulations. In this section we numerically solve an example of the shape
optimization problem (1.1) in the two-dimensional case d = 2, by making use of our theoretical
results obtained in Section 3. The numerical simulations have been performed using Freefem++
software [21] with P1-finite elements and standard affine mesh. We could use the expression of the
shape gradient of J obtained in Theorem 3.12 but, for the purpose of simplifying the computations,
we chose to use the expression provided in Corollary 3.13 under additional assumptions (such
as up € H3(Qp) that we assumed to be true at each iteration). The C? regularity of the shapes
required in Corollary 3.13 is not satisfied since we use a classical affine mesh and thus the discretized
domains have boundaries that are only Lipschitz. Nevertheless it could be possible to impose more
regularity by using curved mesh for example. However the use of such numerical techniques falls
outside the scope of this paper in which the numerical simulations are intended to illustrate our
theoretical results.

4.1. Numerical methodology. Consider an initial shape Q¢ € U (see the beginning of
Section 3 for the definition of If). Note that Corollary 3.13 allows to exhibit a descent direction Vg
of the Tresca energy functional J at 2y as the unique solution to the Neumann problem

—AVO + V() =0 in Qo,
2 2
TVon = — (IFelitlel — fug - Hglug| - 8, (uodytio) + guo¥ (222 ) -n) . on T,
since it satisfies J'(Q0) (Vo) = — HV(1H12{1(QO)<1 <0.
In order to numerically solve the shape optimization problem (1.1) on a given example, we
also have to deal with the volume constraint |Q2] = A > 0. To this aim, the Uzawa algorithm

(see, e.g., [6, Chapter 3 p.64]) is used. In a nutshell it consists in augmenting the Tresca energy
functional J by adding an initial Lagrange multiplier py € R multiplied by the standard volume
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functional minus A. From [6, Chapter 6, Section 6.5], we know that the shape gradient of the
volume functional at €y is given by

Vel RIR) — [ V.neR,
To

and thus one can easily obtain a descent direction Vg(pg) of the augmented Tresca energy functional
at g by adding pon in the Neumann boundary condition of Vj. This descent direction leads to
a new shape Qp := (id + 7Vo(po))(0), where 7 > 0 is a fixed parameter. Finally the Lagrange
multiplier is updated as follows

p1i=po 4+ (|Q] = N),

where p > 0 is a fixed parameter, and the algorithm restarts with {2; and p;, and so on.

Let us mention that the scalar Tresca friction problem is numerically solved using an adaptation
of iterative switching algorithms (see [4]). This algorithm operates by checking at each iteration if
the Tresca boundary conditions are satisfied and, if they are not, by imposing them and restarting
the computation (see [3, Appendix C p.25] for detailed explanations). We also precise that, for
all ¢ € N*, the difference between the Tresca energy functional J at the iteration 20 x i and
at the iteration 20 x (i — 1) is computed. The smallness of this difference is used as a stopping
criterion for the algorithm. Finally the curvature term H is numerically computed by extending
the normal n into a function n which is defined on the whole domain €2,. Then the curvature is
given by H = div(n) — V(2)n - n (see, e.g., [24, Proposition 5.4.8 p.194]).

4.2. Two-dimensional example and numerical results. In this subsection, take d = 2

and f € H'(R?) given by

f: RZ — R
5—a? —y?+u
(e.y) — fley) = (),

and, for a given parameter 3 > 0, let g5 € H?(R?) be given by
9B : RZ — R

(z,y) — glz,y) =0 (1 + (Sig? )n(fc,y),

where 7 € C5°(IR?) is a cut-off function chosen appropriately so that f and g satisfy the assumptions
of the present paper. The volume constraint considered is A = 7 and the initial shape Qy C R? is
an ellipse centered at (0,0) € R?, with semi-major axis a = 1.3 and semi-minor axis b = 1/a.

In what follows, we present the numerical results obtained for this two-dimensional example
using the methodology described in Subsection 4.1, and for different values of 3:

e Figure 1 shows on the left the shape which solves Problem (1.1) for 5 = 0.49, and on the
right the one when the Tresca problem and its energy functional are replaced by Dirichlet
ones (see Remark 3.17). We observe that both shapes are very close. Indeed, with 5 >
0.49, one can check numerically that the solution wp o to the Dirichlet problem (DPg)
satisfies |Oywp | < gg on I', and thus is also the solution to the scalar Tresca friction
problem (TPg). One deduces from Remark 3.17 that the shape gradient of 7 and the one
of Jp coincide. Therefore, since the shape minimizing the Dirichlet energy functional Jp
under the volume constraint A = 7 is a critical shape of the augmented Dirichlet energy
functional, it is also a critical shape of the augmented Tresca energy functional.
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e e

Fic. 1. Shapes minimizing J (left) and Jp (right), under the volume constraint X = m, and with § = 0.49.

Fic. 2. Shapes minimizing J under the volume constraint A\ = w. From top-left to bottom-right, 8 =
0.46,0.43,0.37,0.31. The red boundary shows where v = 0 and the black/blue boundary shows where |Onhu| = gg.

643 e Figure 2 shows the shapes which solve Problem (1.1) for § = 0.46,0.43,0.37,0.31. The
644 shapes are different from the one obtained on the left of Figure 1. In that context, note
645 that the normal derivative of the solution u to the scalar Tresca friction problem (TPg)
646 reaches the friction threshold gg on some parts of the boundary.
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e Figure 3 shows on the left the shapes which solve Problem (1.1) for § = 0.28,0.1,0.01.

Here the normal derivative of the solution u to the scalar Tresca friction problem (TPg)
reaches the friction threshold gg on the entire boundary. Moreover we can notice that these
shapes are very close to the ones (presented on the right of Figure 3) that minimize Jn
with ¢ = gg (see Remark 3.16) under the same volume constraint A = 7. Indeed, for
these values of 3, one can check numerically that the solution wy,q to the Neumann
problem (SNPgq) with ¢ = gs satisfies wn,o > 0 on I', and thus is also the solution to
the scalar Tresca friction problem (TPg). One deduces from Remark 3.16 that the shape
gradient of J and the one of Jn coincide. Therefore, since the shape minimizing the
Neumann energy functional Jn under the volume constraint A = 7 is a critical shape of
the augmented Neumann energy functional, it is also a critical shape of the augmented
Tresca energy functional.

For more details and an animated illustration, we would like to suggest to the reader to watch
the video https://youtu.be/ MufZx3zsew presenting all numerical results we obtained for different
values of 8 from 0.7 to 0.01.

To conclude this paper, we would like to bring to the attention of the reader that, in the
above numerical simulations, it seems that there is a kind of transition from optimal shapes asso-
ciated with the Neumann energy functional to optimal shapes associated with the Dirichlet energy
functional. This transition is carried out by optimal shapes associated with the Tresca energy
functional, continuously with respect to the friction threshold (precisely with respect to the pa-
rameter ). However, we do not have a proof of such a highly nontrivial result. This may constitute
an interesting topic for future investigations.

Q 2 @
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